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ABSTRACT

Data and model heterogeneity are two core issues in Heterogeneous Federated
Learning (HtFL). In scenarios with heterogeneous model architectures, aggregat-
ing model parameters becomes infeasible, leading to the use of prototypes (i.e.,
class representative feature vectors) for aggregation and guidance. However, when
aligned with global prototypes, they still experience a mismatch between the ex-
tra guiding objective and the client’s original local objective. Thus, we propose a
Federated Learning-to-Guide (FedL2G1) method that adaptively learns to guide
local training in a federated manner and ensures the extra guidance is beneficial
to clients’ original tasks. With theoretical guarantees, FedL2G efficiently imple-
ments the learning-to-guide process using only first-order derivatives w.r.t. model
parameters and achieves a non-convex convergence rate of O(1/T ). We con-
duct extensive experiments on two data heterogeneity and six model heterogene-
ity settings using 14 heterogeneous model architectures (e.g., CNNs and ViTs) to
demonstrate FedL2G’s superior performance compared to six counterparts.

1 INTRODUCTION

With the rapid development of AI techniques (Touvron et al., 2023; Achiam et al., 2023), public
data has been consumed gradually, raising the need to access local data inside devices or institu-
tions (Ye et al., 2024). However, directly using local data often raises privacy concerns (Nguyen
et al., 2021). Federated Learning (FL) is a promising privacy-preserving approach that enables col-
laborative model training across multiple clients (devices or institutions) in a distributed manner
without the need to move the actual data outside clients (Kairouz et al., 2019; Li et al., 2020). Nev-
ertheless, data heterogeneity (Li et al., 2021; Zhang et al., 2023d;a) and model heterogeneity (Zhang
et al., 2024b; Yi et al., 2023) remain two practical issues when deploying FL systems. Personalized
FL (PFL) mainly focuses on the data heterogeneity issue (Zhang et al., 2023e), while Heteroge-
neous FL (HtFL) considers both data and model heterogeneity simultaneously (Zhang et al., 2024a).
HtFL’s support for model heterogeneity enables a broader range of clients to participate in FL with
their customized models.

In HtFL, sharing model parameters, a widely used technique in traditional FL and PFL is not ap-
plicable (Zhang et al., 2024b). Instead, lightweight knowledge carriers, including small auxiliary
models (Shen et al., 2020; Wu et al., 2022; Yi et al., 2024), tiny homogeneous modules (Liang et al.,
2020; Yi et al., 2023), and prototypes (i.e., class representative feature vectors) (Jeong et al., 2018;
Tan et al., 2022b), can be shared among clients. Prototypes offer the most significant communication
efficiency due to their compact size.

However, representative prototype-based methods FedDistill (Jeong et al., 2018) and FedProto (Tan
et al., 2022b), still suffer from a mismatch between the prototype-guiding objective and the client’s
original local objective. These methods typically introduce an extra guiding objective alongside the
original local objective, aiming to guide local features to align with the global ensemble prototypes.
Due to the significant variation in width and depth among clients’ heterogeneous models, their fea-
ture extraction capabilities also differ considerably (Zhang et al., 2024a;b). On the other hand, the
data distribution also diverges across clients (McMahan et al., 2017; Li et al., 2022). Since the global
prototypes are derived from aggregating diverse local prototypes, they inherently cannot fully align

1Code is included in the supplementary material.
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with specific client models and their respective data. Consequently, directly optimizing the guid-
ing and local objectives together without prioritizing the original local objective has the potential to
undermine the local objective of each client due to the objective mismatch, as shown in Fig. 1.
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Figure 1: The objective mismatch prob-
lem increases the original local loss dur-
ing FL, leading to lower test accuracy.
The loss increase is calculated as the
difference between the current original
local loss and its previous minimum.

To address the issue of objective mismatch, we propose a
novel Federated Learning-to-Guide (FedL2G) method.
It prioritizes the original local objective while learning the
guiding objective, ensuring that the guiding objective fa-
cilitates each client’s original local task rather than caus-
ing negative effects to the original local objective. This
is why we term it “learning to guide”. Specifically, we
hold out a tiny quiz set from the training set and denote
the remaining set as a study set on each client. Then we
learn guiding vectors in a federated manner, ensuring that
updating client models with the extra guiding loss and
the original local loss on their study sets consistently re-
duces the original local loss on their quiz sets (which are
not used for training and testing). The steadily decreas-
ing original local loss (no loss increase) and the superior
test accuracy illustrated in Fig. 1 embody the design phi-
losophy and effectiveness of our FedL2G. Moreover, in
contrast to learning-to-learn (Finn et al., 2017; Jiang et al.,
2019; Fallah et al., 2020a), the learning-to-guide process
in our FedL2G only requires first-order derivatives w.r.t.
model parameters, making it computationally efficient.

We assess the performance of our FedL2G across various scenarios, including two types of data het-
erogeneity, six types of model heterogeneity involving 14 different model architectures, and diverse
system settings. In addition to test accuracy, we also evaluate communication and computation over-
head. The results consistently demonstrate that FedL2G outperforms six state-of-the-art methods,
achieving the best model performance. We summarize our contributions as follows:

• In the context of HtFL with data and model heterogeneity, we analyze and observe the ob-
jective mismatch issue between the extra guiding objective and the original local objective
within representative prototype-based methods.

• We propose a FedL2G method that prioritizes the original local objective while using the
extra guiding objective to eliminate the objective mismatch issue.

• We theoretically prove that FedL2G achieves efficiency using only first-order derivatives
w.r.t. model parameters, with a non-convex convergence rate of O(1/T ).

• To demonstrate our FedL2G ’s priority, we conducted extensive experiments covering two
types of data heterogeneity, six types of model heterogeneity (including 14 distinct model
architectures such as CNNs and ViTs), and various system settings.

2 RELATED WORK

2.1 HETEROGENEOUS FEDERATED LEARNING (HTFL)

Presently, FL is one of the popular collaborative learning and privacy-preserving techniques (Zhang
et al., 2023d; Li et al., 2020) and HtFL extends traditional FL by supporting model heterogene-
ity (Ye et al., 2023). Prevailing HtFL methods primarily consider three types of model hetero-
geneity: (1) group heterogeneity, (2) partial heterogeneity, and (3) full heterogeneity (Zhang et al.,
2024b). Among them, the HtFL methods considering group model heterogeneity extract different
but architecture-constraint sub-models from a global model for various groups of clients (Diao et al.,
2020; Horvath et al., 2021; Wen et al., 2022; Luo et al., 2023; Zhou et al., 2023). Thus, they cannot
support customized client models and are excluded from our consideration. Additionally, sharing
and revealing model architectures within each group of clients also raises privacy and intellectual
property concerns (Zhang et al., 2024a). As the server is mainly utilized for parameter aggregation
in prior FL systems (Tan et al., 2022a; Kairouz et al., 2019), training a server module with a large
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number of epochs, like (Zhang et al., 2024b;a; Zhu et al., 2021), necessitates additional upgrades or
the purchase of a new heavy server, which is impractical. Thus, we focus on the server-lightweight
methods.

Both partial and full model heterogeneity accommodate customized client model architectures, but
partial heterogeneity still assumes that some small parts of all client models are homogeneous. For
example, LG-FedAvg (Liang et al., 2020) and FedGH (Yi et al., 2023) stand out as two representative
approaches. LG-FedAvg and FedGH partition each client model into a feature extractor part and a
classifier head part, operating under the assumption that all classifier heads are homogeneous. In LG-
FedAvg, the parameters of classifier heads are uploaded to the server for aggregation. In contrast,
FedGH uploads prototypes to the server and trains the lightweight global classifier head for a small
number of epochs. Both methods utilize the global head for knowledge transfer among clients but
overlook the inconsistency between the global head and local tasks.

In the case of full model heterogeneity, mutual distillation (Zhang et al., 2018) and prototype guid-
ance (Tan et al., 2022b) emerge as two prevalent techniques. Using mutual distillation, FML (Shen
et al., 2020) and FedKD (Wu et al., 2022) facilitate client knowledge transfer through a globally
shared auxiliary model. However, sharing an entire model demands substantial communication
resources, even if the auxiliary model is typically small (Zhang et al., 2024b). Furthermore, aggre-
gating a global model in scenarios with data heterogeneity presents numerous challenges, such as
client-drift (Karimireddy et al., 2020), ultimately leading to a subpar global model (Li et al., 2022;
Zhang et al., 2023a;b;c). As representative prototype guidance methods, FedDistill (Jeong et al.,
2018) and FedProto (Tan et al., 2022b) gather prototypes on each client, aggregate them on the
server to create the global prototypes, and guide client local training with these global prototypes.
Specifically, FedDistill extracts lower-dimensional prototypes than FedProto. This difference stems
from FedDistill applying prototype guidance in the logit space, whereas FedProto uses the interme-
diate feature space. Sharing higher-dimensional prototypes can transfer more information among
clients but may also exacerbate the negative effects of objective mismatch.

2.2 STUDENT-CENTERED GUIDANCE

Our learning-to-guide philosophy draws inspiration from student-centered knowledge distillation
approaches (Yang et al., 2024). They are based on the insight that a teacher’s subject matter ex-
pertise alone may not match the student’s specific studying ability and style, resulting in negative
effects (Sengupta et al., 2023; Yang et al., 2024). To address the mismatch between the teacher’s
knowledge and the needs of the student, updating the teacher model with concise feedback from
the student on a small quiz set represents a promising direction (Ma et al., 2022; Zhou et al., 2022;
Sengupta et al., 2023).

However, these student-centered approaches are built upon a teacher-student framework, assuming
the presence of a well-trained large teacher model. They concentrate on a central training scheme
without factoring in distributed multiple students and privacy protection (Lee et al., 2022; Hu et al.,
2022), rendering them inapplicable in the context of HtFL. Additionally, modifying and extending
these student-centered approaches to HtFL requires significant communication and computational
resources to update a shared large teacher model based on student feedback (Zhou et al., 2022; Lu
et al., 2023). Nevertheless, the student-centered guidance concept inspires us to propose a learning-
to-guide approach in HtFL. This involves substituting the large teacher model with compact guiding
vectors and updating these guiding vectors based on clients’ feedback from their quiz sets, making
our FedL2G lightweight, efficient, and adaptable.

3 FEDERATED LEARNING-TO-GUIDE: FEDL2G

3.1 NOTATIONS AND PRELIMINARIES

Problem statement. In an HtFL system, N clients, on the one hand, train their heteroge-
neous local models (with parameters θ1, . . . ,θN ) using their private and heterogeneous training
data D1, . . . ,DN . On the other hand, they share some global information, denoted by G, with the
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assistance of a server to facilitate collaborative learning. Formally, the typical objective of HtFL is

min
θ1,...,θN

N∑
i=1

|Di|
D
LDi(θi,G), (1)

where |Di| represents the size of the training set Di, D =
∑N

i=1 |Di|, and LDi
denotes a total client

training objective over Di.

Prototype-based HtFL. Sharing class-wise prototypes of low-dimensional features in either
the intermediate feature space or the logit space among clients has become a prevalent and
communication-efficient solution to address model heterogeneity in HtFL (Ye et al., 2023). Take
the popular scheme (Jeong et al., 2018) for example, where prototypes are shared in the logit space,
G (the set of global prototypes) is defined by

G = {gy}Cy=1, gy = agg({gy
1 , . . . , g

y
N}), gy

i = E(x,y)∼Di,y
[fi(x,θi)], (2)

and C represents the total number of clients’ original local tasks classes. gy and gy
i denote the global

and local prototypes of class y, respectively. Besides, agg is an aggregation function defined by each
prototype-based HtFL method, Di,y stands for a subset of Di containing all the data of class y, and
fi represents the local model of client i. Given a global G, client i then takes prototype guidance for
knowledge transfer among clients via

LDi
(θi,G) := E(x,y)∼Di

[ℓce(fi(x,θi), y) + ℓg(fi(x,θi), g
y)], (3)

where the weight of ℓg is set to one to balance two objectives equally here, ℓce is the original local
cross-entropy loss (Zhang & Sabuncu, 2018), and ℓg is the guiding loss.

3.2 LEARNING TO GUIDE

Motivation. Initially, heterogeneous client models trained by ℓce can adapt to their local data with
diverse feature extraction capabilities. However, directly adding ℓg without prioritizing ℓce can cause
the model of each client to deviate from ℓce. On the other hand, since all feature vectors are extracted
on heterogeneous client data, the aggregated global prototype, e.g., gy , is data-derived, which may
deviate from the features regarding class y on each client. Both the model and data heterogeneity
result in the objective mismatch issue between ℓce and ℓg , which causes the negative effect to ℓce
when using ℓg , as shown in Fig. 1 and discussed further in Sec. 4.5. Therefore, we propose a
novel FedL2G method, which substitutes the data-derived prototypes with trainable guiding vectors
G = {vy}Cy=1 and ensures that G is learned to reduce ℓce when guided by ℓg . Formally, we replace
Eq. (3) with a new loss to train the client model:

LDi
(θi,G) := E(x,y)∼Di

[ℓce(fi(x,θi), y) + ℓg(fi(x,θi),v
y)], (4)

where the learning of guiding vectors G is the key step.

Learning guiding vectors. Without relying on data-derived information, we randomly initial-
ize the global G on the server and update it based on the aggregated gradients from participating
clients in each communication iteration. Inspired by the technique of outer-inner loops in meta-
learning (Zhou et al., 2022), we derive the gradients of client-specific vy

i in the outer-loop, while
focusing on reducing the original local loss, i.e., ℓce, in the inner-loop on each client. To implement
the learning-to-guide process, we hold out a tiny quiz set Dq

i (one batch of data) fromDi and denote
the remaining training set as the study set Ds

i . Notice that we exclusively conduct model updates on
Ds

i and never train θi on Dq
i . In particular, Dq

i is solely used to evaluate θi’s performance regarding
the original local loss and derive the gradients (feedback) w.r.t. vy

i . Below, we describe the details
of FedL2G in the t-th iteration, using the notation t solely for the global G for clarity. Recall that
G = {vy}Cy=1, we use the general notation G in the following descriptions for simplicity, although
all operations correspond to each vy, y ∈ {1, . . . , C} within G.

Firstly, in step 1 , we download Gt−1 from the server to client i. Then, in step 2 , we perform
regular training for θi on Ds

i using LDs
i
(θi,Gt−1) (see Eq. (4)). Sequentially, the pivotal steps 3

and 4 correspond to our objective of learning-to-guide. We illustrate steps 3 and 4 in Fig. 2.
In step 3 , we execute a pseudo-train step (without saving the updated model back to disk) on a
randomly sampled batch Bsi from Ds

i , i.e.,

θ′
i(Gt−1)← θi − ηc∇θiLBs

i
(θi,Gt−1), (5)
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where ηc is the client learning rate, and we call θ′
i(Gt−1) as the pseudo-trained local model param-

eters, which is a function of Gt−1. In step 4 , our aim is to update the Gt−1 in LBs
i
(θi,Gt−1) (see

Eq. (4)) to minimize ℓce with θ′
i(Gt−1) on Dq

i , thus we compute the gradients of Gt−1 w.r.t. ℓce
on Dq

i : ∇Gt−1E(x,y)∼Dq
i
[ℓce(fi(x,θ

′
i(Gt−1)), y)] (see Sec. 3.3 for details). Afterwards, we upload

clients’ gradients of Gt−1 in step 5 and aggregate them in step 6 . Then, in step 7 , we update the
global Gt−1 on the server with the aggregated gradients. Put steps 3 , 4 , 5 , 6 , 7 together, we
have

Gt = Gt−1 − ηs
1

|It|
∑
i∈It

∇Gt−1E(x,y)∼Dq
i
[ℓce(fi(x,θi − ηc∇θiLBs

i
(θi,Gt−1)), y)], (6)

where ηs is the server learning rate and It is the set of participating clients in the t-th iteration. We
utilize the weight 1

|It| here, considering that all participating clients execute step 3 and 4 with
identical sizes of Bsi and Dq

i , i ∈ {1, . . . , N}. Since some classes may be absent on certain clients,
we only upload and aggregate the non-zero gradient vectors to minimize communication costs. We
can easily implement Eq. (6) using popular public tools, e.g., higher (Grefenstette et al., 2019).

ℓ௚
௦ ℓ௖௘

௦𝒢 𝜃௜

ℓ௖௘
௤𝜃௜

ᇱ(𝒢)

𝜋௜

③

④Client i

Forward pass:

Backward pass: (1st derivative)

(2nd derivative)

→

Updated to: →

Figure 2: Steps 3 and 4 of FedL2G in one iter-
ation. ℓs and ℓq denote the loss computed on the
study and quiz sets, respectively. We omit data
for clarity. Step 3 : Update the local model θi to
a pseudo model θ′

i(G) (parameterized by G) using
the study set. Step 4 : Compute the gradients of
G from Step 3 based on the gradients of θ′

i(G) to
minimize ℓqce on the quiz set.

Warm-up period. Since G is randomly ini-
tialized, using an uninformative G misguides
local model training in Eq. (4). Therefore, be-
fore conducting regular client training in step
2 , FedL2G requires a warm-up period of T ′ it-

erations with step 1 , 3 , 4 , 5 , 6 , 7 . Without
step 2 , the warm-up process only involves one
batch of each client’s quiz set, thus demanding
relatively small computation overhead.

Twin HtFL methods based on FedL2G. The
above processes assume sharing information in
the logit space, denoted as FedL2G-l. Addi-
tionally, when considering the intermediate fea-
ture space, we can rephrase all the correspond-
ing ℓg , for instance, rewriting ℓg(hi(x,θ

h
i ),v

y)
in Eq. (4), where hi represents the feature ex-
tractor component in fi, θh

i ⊂ θi denotes the
associated model parameters, and vy resides in
the intermediate feature space. We denote this
twin method as FedL2G-f. The server learn-
ing rate ηs is the unique hyperparameter in our
FedL2G-l or FedL2G-f. Due to space con-
straints, we offer a detailed algorithm of our
FedL2G-l in Algorithm 1. Extending it to FedL2G-f only requires necessary substitutions.

3.3 EFFICIENCY ANALYSIS

As we compute gradients for two different entities in the outer-loop and inner-loop, respectively,
we eliminate the necessity for calculating the second-order gradients of model parameters w.r.t. ℓce
as well as the associated computationally intensive Hessian (Fallah et al., 2020b). Our analysis
is founded on Assumption 1 and Assumption 2 in Appendix C. Due to space limit, we leave the
derivative details to Eq. (C.11) and show client i’s gradient w.r.t. G here:

πi = −ηcE(x,y)∼Dq
i
{∇1ℓce · ∇2fi · E(x′,y′)∼Bs

i
[∇2fi · ∇Gt−1∇1ℓg]}, (7)

where ∇1ℓce := ∇a1
ℓce(a1, a2), indicating the derivative of ℓce w.r.t. the first variable, and so for

∇2fi and ∇1ℓg . The operation · denotes multiplication. Computing ∇1ℓce and ∇2fi is a com-
mon practice in deep learning (Zhang & Sabuncu, 2018) and calculating the ∇Gt−1∇1ℓg term is
pivotal. To simplify the calculation, we choose the MSE loss as our ℓg , so ℓg(fi(x

′,θi),v
y′
) =

1
M

∑M
m=1[fi(x

′,θi)m − vy′

m]2, where M is the dimension of vy′
. Given G = {vy}Cy=1, we have

∇Gt−1∇1ℓg =
2

M

M∑
m=1

∇Gt−1(fi(x
′,θi)m − vy′

m) =
2

M

M∑
m=1

−1 = −2. (8)
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Algorithm 1 The Learning Processes in FedL2G-l

Input: N clients; initial parameters θ0
1, . . . ,θ

0
N and G0 = {vy,0}Cy=1; ηc: local learning rate; ηs:

server learning rate; ρ: client joining ratio; E: local epochs; T : total communication iterations.
Output: Well-trained client model parameters θ1, . . . ,θN .

1: All clients split their training data into a study set Ds and a batch of quiz set Dq .
2: for communication iteration t = 1, . . . , T do
3: Server samples a client subset It based on ρ.
4: Server sends Gt−1 to each client in It.
5: for Client i ∈ It in parallel do
6: if t > T ′ then
7: Updates θt−1

i to θt
i using SGD for E epochs via

minθi E(x,y)∼Ds
i
[ℓce(fi(x,θ

t−1
i ), y) + ℓg(fi(x,θ

t−1
i ),vy,t−1)]

8: else
9: Marks θt−1

i as θt
i .

10: Executes a pseudo-train step on a randomly sampled batch Bsi via Eq. (5) with θt
i .

11: Computes the gradients of Gt−1, i.e., πt
i , on Dq

i via Eq. (7).
12: Sends non-zero vectors among πt

i to the server.
13: Server averages the non-zero vectors of πt

i , i ∈ It for each class to obtain πt.
14: Server updates Gt−1 to Gt via Gt = Gt−1 − ηsπ

t.
15: return θT

1 , . . . ,θ
T
N .

Finally, we obtain

πi = 2ηcE(x,y)∼Dq
i
{∇1ℓce · ∇2fi · E(x′,y′)∼Bs

i
[∇2fi]}, (9)

where only first-order derivatives of fi w.r.t. θi are required.

3.4 CONVERGENCE ANALYSIS

Given notations, assumptions, and proofs in Appendix C, we have
Theorem 1 (One-iteration deviation). Let Assumption 1 to Assumption 3 hold. For an arbitrary
client, after every communication iteration, we have

E[L(t+1)E+1/2] ≤ LtE+1/2 + (
L1η

2
c

2
− ηc)

E−1∑
e=1/2

||∇LtE+e||22 +
L1Eη2cσ

2

2
+ 2η2cηsL2R

′ER.

Theorem 2 (Non-convex convergence rate of FedL2G). Let Assumption 1 to Assumption 3 hold
and ∆ = L0 − L∗, where L∗ refers to the local optimum. Given Theorem 1, for an arbitrary client
and an arbitrary constant ϵ, our FedL2G has a non-convex convergence rate O(1/T ) with

1

T

T−1∑
t=0

E−1∑
e=1/2

E[||∇LtE+e||22] ≤
2∆
T + L1Eη2cσ

2 + 4η2cηsL2R
′ER

2ηc − L1η2c
< ϵ,

where 0 < ηc <
2ϵ

L1(Eσ2+ϵ)+4ηsL2R′ER and ηs > 0.

According to Theorem 2, our FedL2G can converge at a rate of O(1/T ), and the server learning
rate ηs can be set to any positive value.

4 EXPERIMENTS

To evaluate the performance of our FedL2G-l and FedL2G-f alongside six popular server-
lightweight HtFL methods: LG-FedAvg (Liang et al., 2020), FedGH (Yi et al., 2023), FML (Shen
et al., 2020), FedKD (Wu et al., 2022), FedDistill (Jeong et al., 2018), and FedProto (Tan et al.,
2022b), we conduct comprehensive experiments on four public datasets under two widely used

6
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data heterogeneity settings, involving up to 14 heterogeneous model architectures. Specifically,
we demonstrate the encouraging performance of FedL2G in accuracy, communication cost, and
computation cost. Subsequently, we investigate the characteristics behind our FedL2G from an
experimental perspective.

Data heterogeneity settings. Following existing work (Zhang et al., 2023d; Lin et al., 2020;
Zhang et al., 2023b; 2024a), we adopt two popular settings across four enduring datasets Ci-
far10 (Krizhevsky & Geoffrey, 2009), Cifar100 (Krizhevsky & Geoffrey, 2009), Flowers102 (Nils-
back & Zisserman, 2008), and Tiny-ImageNet (Chrabaszcz et al., 2017). Concretely, we simulate
pathological data heterogeneity settings by allocating sub-datasets with 2/10/10/20 data classes from
Cifar10/Cifar100/Flowers102/Tiny-ImageNet to each client. In Dirichlet data heterogeneity settings,
we allocate the data of class y to each client using a client-specific ratio qy from a given dataset.
qy is sampled from a Dirichlet distribution with a control parameter β as described in (Lin et al.,
2020). By default, we set β = 0.1 for Cifar10 and Cifar100, and β = 0.01 for Flowers102 and
Tiny-ImageNet to enhance setting diversity. In both the pathological and Dirichlet settings, the data
quantity among clients varies to account for unbalanced scenarios.

Model heterogeneity settings. To neatly denote model heterogeneity settings, we utilize the
notation HtFEX following the convention in (Zhang et al., 2024b) to represent a group of heteroge-
neous feature extractors, where X denotes the degree of model heterogeneity (positive correlation),
while the remaining classifier heads remain homogeneous. For example, HtFE8 denotes a group
of eight heterogeneous feature extractors from eight model architectures (4-layer CNN (McMahan
et al., 2017), GoogleNet (Szegedy et al., 2015), MobileNet v2 (Sandler et al., 2018), ResNet18,
ResNet34, ResNet50, ResNet101, and ResNet152 (He et al., 2016)), respectively. In addition, we
use the notation HtMX to denote a group of fully heterogeneous models. Within a specific group,
for instance, HtFEX , we allocate the (i mod X)th model in this group to client i with reinitialized
parameters. Given the popularity of all models within HtFE8 in the FL field, our primary focus is on
utilizing HtFE8. Additionally, some baseline methods, such as LG-FedAvg and FedGH, assume the
classifier heads to be homogeneous, making HtMX inapplicable for them. Moreover, to meet the
prerequisite of identical feature dimensions (K) for FedGH, FedKD, and FedProto, we incorporate
an average pooling layer (Szegedy et al., 2015) before the classifier heads and set K = 512 for all
models.

Other necessary settings. Following common practice (McMahan et al., 2017), we execute a
complete local training epoch with a batch size of 10, i.e., ⌊ni

10⌋ update steps, during each communi-
cation iteration. We conduct each experiment for up to 1000 iterations across three trials, employing
a client learning rate (ηc) of 0.01, and present the best results with error bars. Moreover, we examine
full participation (ρ = 1), for 20 clients, while setting partial participation (ρ = 0.5) for scenarios
involving 50 and 100 clients. Please refer to the Appendix A for more details and results.

4.1 ACCURACY IN TWO DATA HETEROGENEITY SETTINGS

Table 1: The test accuracy (%) on four datasets in two data heterogeneity settings using HtFE8.

Settings Pathological Setting Dirichlet Setting

Datasets C10 C100 F102 TINY C10 C100 F102 TINY

LG-FedAvg 86.8±.3 57.0±.7 58.9±.3 32.0±.2 84.6±.5 40.7±.1 70.0±.9 48.2±.1
FedGH 86.6±.2 57.2±.2 59.3±.3 32.6±.4 84.4±.3 41.0±.5 69.7±.2 46.7±.1
FML 87.1±.2 55.2±.1 57.8±.3 31.4±.2 85.9±.1 39.9±.3 68.4±1.2 47.1±.1
FedKD 87.3±.3 56.6±.3 54.8±.4 32.6±.4 86.5±.2 40.6±.3 69.6±1.6 48.2±.5
FedDistill 87.2±.1 57.0±.3 58.5±.3 31.5±.4 86.0±.3 41.5±.1 71.2±.7 48.8±.1
FedProto 83.4±.2 53.6±.3 55.1±.2 29.3±.4 82.1±1.7 36.3±.3 62.3±.6 40.0±.1

FedL2G-l 87.7±.1 59.2±.4 60.3±.9 32.8±.7 86.5±.1 42.3±.1 71.5±.5 49.5±.3
FedL2G-f 89.3±.2 64.2±.3 64.2±.2 34.7±.3 87.6±.2 43.8±.4 73.6±.3 50.3±.4

To save space, we utilize brief abbreviations to represent the dataset names, specifically: “C10” for
Cifar10, “C100” for Cifar100, “F102” for Flowers102, and “TINY” for Tiny-ImageNet. Based on
Tab. 1, both FedL2G-l and FedL2G-f show superior performance compared to baseline methods.
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Notably, FedL2G-f demonstrates better performance across all datasets and scenarios. This can be
attributed to the fact that FedL2G-l learns to guide the original local task in the logit space, while
FedL2G-f focuses on the intermediate feature space, and the latter contains richer information due
to its higher dimension. Regarding accuracy, FedL2G-f surpasses the best baseline FedGH on
Cifar100 by 7.0% (a percentage improvement of 12.2%) in the pathological setting. Methods based
on mutual distillation, such as FML and FedKD, transfer more information (with more bits) than
other methods in each iteration. Yet, they do not consistently achieve optimal performance due to
the absence of a teacher model with prior knowledge. FedProto suffers in the model heterogeneity
setting and performs the worst, as client models exhibit varying feature extraction abilities (Zhang
et al., 2024a). Conversely, our FedL2G-f excels with learning-to-guide in the intermediate feature
space. While FedDistill mitigates this issue by sharing prototypical logits, there is still room for
improvement through learning-to-guide in the logit space, a capability offered by FedL2G-l.

4.2 ACCURACY IN ADDITIONAL FIVE MODEL HETEROGENEITY SETTINGS

Table 2: The test accuracy (%) on Cifar100 in the default Dirichlet setting with incremental degrees
of model heterogeneity or more clients.

Settings Incremental Degrees of Model Heterogeneity More Clients (ρ = 0.5)

HtFE2 HtFE3 HtFE4 HtFE9 HtM10 N = 50 N = 100

LG-FedAvg 46.6±.2 45.6±.4 43.9±.2 42.0±.3 — 37.8±.1 35.1±.5
FedGH 46.7±.4 45.2±.2 43.3±.2 43.0±.9 — 37.3±.4 34.3±.2
FML 45.9±.2 43.1±.1 43.0±.1 42.4±.3 39.9±.1 38.8±.1 36.1±.3
FedKD 46.3±.2 43.2±.5 43.2±.4 42.3±.4 40.4±.1 38.3±.4 35.6±.6
FedDistill 46.9±.1 43.5±.2 43.6±.1 42.1±.2 41.0±.1 38.5±.4 36.1±.2
FedProto 44.0±.2 38.1±.6 34.7±.6 32.7±.8 36.1±.1 33.0±.4 29.0±.5

FedL2G-l 47.3±.1 44.5±.1 44.8±.1 44.1±.1 41.8±.2 38.9±.2 36.7±.1
FedL2G-f 47.8±.3 45.8±.1 44.7±.1 45.7±.2 43.5±.1 40.5±.0 37.9±.3

Besides the HtFE8 group, we also explore five other model heterogeneity settings, while main-
taining consistent data heterogeneity in the Dirichlet setting to control variables. The degree of
model heterogeneity escalates from HtFE2 to HtM10 as follows: HtFE2 comprises 4-layer CNN and
ResNet18; HtFE3 includes ResNet10 (Zhong et al., 2017), ResNet18, and ResNet34; HtFE4 com-
prises 4-layer CNN, GoogleNet, MobileNet v2, and ResNet18; HtFE9 includes ResNet4, ResNet6,
and ResNet8 (Zhong et al., 2017), ResNet10, ResNet18, ResNet34, ResNet50, ResNet101, and
ResNet152; HtM10 contains all the model architectures in HtFE8 plus two additional architec-
tures ViT-B/16 (Dosovitskiy et al., 2020) and ViT-B/32 (Dosovitskiy et al., 2020). ViT models
have a complex classifier head, whereas other CNN-based models only consider the last fully con-
nected layer as the classifier head. Consequently, methods assuming a homogeneous classifier head,
such as LG-FedAvg and FedGH, do not apply to HtM10. Referring to Tab. 2, our FedL2G-l
and FedL2G-f still perform well in these scenarios, particularly in more model-heterogeneous
settings. As the setting becomes more heterogeneous, finding consistent knowledge to share be-
comes increasingly challenging, and negative transfer (Cui et al., 2022) may also arise. However,
learning-to-guide knowledge is generic, making it easy for FedL2G to aggregate and distribute this
knowledge in diverse scenarios, benefiting all clients.

4.3 ACCURACY WITH MORE CLIENTS OR MORE LOCAL TRAINING EPOCHS

More Clients. In addition to experimenting with a total of 20 clients, we extend our evaluation by
incorporating more clients created using the given Cifar100 dataset. With an increase in the number
of clients, maintaining a consistent total data amount across all clients results in less local data on
each client. In these scenarios, with a partial client participation ratio of ρ = 0.5, our FedL2G-l
and FedL2G-f can still maintain their superiority, as shown in Tab. 2.

More Local Training Epochs. Increasing the number of local epochs, denoted by E, in each
communication iteration can reduce the total number of iterations required for convergence, conse-
quently lowering total communication overhead (McMahan et al., 2017; Zhang et al., 2024b). In
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Tab. 3, FedGH experiences approximately a 1% decrease in accuracy when E ≥ 10. Since the
globally shared model struggles with data heterogeneity, FML and FedKD also exhibit performance
degradation with a larger E, albeit more severe. Specifically, FML and FedKD continue to decrease
from E = 5 to E = 20, with FML dropping by 3.1% and FedKD dropping by 2.0%. In contrast, our
FedL2G-l and FedL2G-f consistently uphold superior performance even with a larger E. Re-
markably, FedL2G-f shows an increase of 0.6% in accuracy from E = 5 to E = 20, showcasing
its exceptional adaptability in scenarios with low communication quality.

Table 3: The test accuracy (%) on Cifar100 in the default Dirichlet setting using HtFE8 for three
experiments. “MB” and “s” are short for megabyte and second, respectively. The time in the brackets
represents the cost of the warm-up period, several times less than local training.

Experiments Local Training Epochs Comm. (MB) Computation (s)

E = 5 E = 10 E = 20 Up. Down. Client Server

LG-FedAvg 40.3±.2 40.5±.1 40.9±.2 3.93 3.93 6.18 0.04
FedGH 41.1±.3 39.9±.3 40.2±.4 1.75 3.93 9.53 0.37
FML 39.1±.3 38.0±.2 36.0±.2 70.57 70.57 8.63 0.07
FedKD 41.1±.1 40.4±.2 39.1±.3 63.02 63.02 9.04 0.07
FedDistill 41.0±.3 41.3±.2 41.1±.4 0.34 0.76 6.52 0.03
FedProto 38.0±.5 38.1±.4 38.7±.5 1.75 3.89 6.65 0.04

FedL2G-l 42.2±.2 42.0±.2 42.1±.1 0.34 0.76 7.49 (2.23) 0.03
FedL2G-f 43.7±.1 43.8±.2 44.3±.3 1.75 3.89 8.84 (2.24) 0.04

4.4 COMMUNICATION AND COMPUTATION OVERHEAD

Communication cost. We consider both the upload and download bytes (across all participat-
ing clients) as part of the communication overhead in each iteration, using a float32 (= 4 bytes)
data type in PyTorch (Paszke et al., 2019) to store each floating number. In Tab. 3, despite FML
and FedKD transmitting a relatively small global model, their communication costs remain signifi-
cantly high compared to other methods that share lightweight components. The SVD technique in
FedKD (Wu et al., 2022), does not significantly reduce the communication overhead. Given that we
only upload the gradients of guiding vectors on the client, the communication cost of FedL2G-l
and FedL2G-f is equivalent to that of FedDistill and FedProto, respectively. This cost falls within
the lowest group among these methods.

Computation cost. To capture essential operations, we measure the averaged GPU execution time
of each client and the server on an idle GPU card in each iteration and show the time cost in Tab. 3.
As FedGH gathers prototypes after local training, it costs extra time for inferencing across the entire
training set using the trained client model. In contrast, FedDistill and FedProto collect prototypical
logits and features, respectively, concurrently with model training in each batch, thereby eliminating
this additional cost. Besides, FedGH trains the global head on the server consuming relatively more
power, even with one server epoch per iteration. Since we only average gradients on the server
and update G once without backpropagation, our FedL2G-l and FedL2G-f demonstrate similar
time-efficiency to FedDistill and FedProto, respectively. Due to the extra learning-to-guide process,
FedL2G costs more client time than FedDistill and FedProto. However, FedL2G-l still requires
less time than FML, FedKD, and FedGH, and the improved test accuracy justifies this cost.

4.5 FEDL2G PRIORITIZES THE ORIGINAL TASK

Beyond presenting the test accuracy, we examine the training losses by examining the intrinsic
training process. For each method, we illustrate only the original local loss, i.e., ℓce, in Fig. 3.
Specifically, we aggregate all the clients’ original local losses through weighted averaging, fol-
lowing Eq. (1). These original local loss curves closely align with the accuracy trends in Tab. 2
(HtFE9), indicating that lower original local loss corresponds to higher test accuracy in our scenar-
ios. Since our FedL2G learns guiding vectors that help the client model focus more on its original
task, FedL2G-l and FedL2G-f achieve the second-lowest and lowest losses, respectively.
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Figure 3: The averaged original local loss (ℓce) of
all clients for nine HtFL methods on Cifar100 in
the default Dirichlet setting using HtFE9.

Besides the magnitude of the original local
losses, our FedL2G method also offers advan-
tages in smoothness and convergence speed.
From Fig. 3, we observe that the loss curves of
FedDistill, FedGH, FedProto, and LG-FedAvg
fluctuate significantly in the beginning. The
growth of ℓce can be attributed to the mismatch
of the shared global information and clients’
tasks. Given that FedL2G-l and FedL2G-f
focus on clients’ original tasks, we can intro-
duce more client-required information for guid-
ing vectors, leading to a stable reduction in the
original local loss. Because of the same ben-
efits, FedL2G-f can converge at a relatively
early iteration and achieve the highest test accu-
racy simultaneously. Despite the lesser amount
of guiding information in FedL2G-l com-
pared to FedL2G-f, FedL2G-l also demon-
strates superiority in terms of smoothness and
convergence when compared to FedDistill.

4.6 FEDL2G PROTECTS FEATURE INFORMATION

(a) FedL2G-l. (b) FedL2G-f.

Figure 4: The t-SNE visualization of guiding
vectors (diamonds) and feature vectors (circles)
on Cifar10 in the default Dirichlet setting us-
ing HtFE8. Different colors represent different
classes. Best viewed in color.

Differing from FedDistill and FedProto, which
gather data-derived prototypical logits and fea-
tures from the clients, we collect the gradi-
ents of randomly initialized guiding vectors.
These gradients are calculated using a complex
formula (refer to Eq. (7)) to reduce the origi-
nal local losses for all clients. Therefore, our
FedL2G does not directly upload client data-
related information and safeguards the feature
information for clients. In a sense, logit vectors
are also feature vectors with lower dimensions.
Here, we illustrate the t-SNE (Van der Maaten
& Hinton, 2008) visualization of the global pro-
totypes {gy}Cy=1 (obtained via Eq. (2)) and the
guiding vectors {vy}Cy=1 from FedL2G-l and
FedL2G-f. As per Fig. 4, guiding vectors dif-
fer from global prototypes because they do not
overlap. Moreover, guiding vectors and global prototypes of the same class do not always cluster.
Instead, guiding vectors and global prototypes from different classes can be closer, providing addi-
tional protection for the class information of local features. This phenomenon is more pronounced
in FedL2G-f, where the distances between guiding vectors and global prototypes are larger than
in FedL2G-l. This is because the guiding vectors in FedL2G-f have relatively more parameters
and knowledge to learn. Given that a larger distance signifies improved discrimination and guidance
for the class-wise vectors utilized in a guiding loss (Zhang et al., 2024a), our guiding vectors ex-
hibit greater separability than the global prototypes, indicating enhanced guidance capability for the
client models.

5 CONCLUSION

We observe the original local loss growth phenomenon on the client in prior prototype-based HtFL
methods when guided by global prototypes. Then we attribute this problem to the mismatch between
the guiding objective and the client’s original local objective. To address this issue, we propose a
FedL2G approach to reduce the client’s original objective when using guiding vectors by prior-
itizing the local objective during the learning of guiding vectors. The superiority of FedL2G is
evidenced through theoretical analysis and extensive experiments.
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A ADDITIONAL EXPERIMENTAL DETAILS

Datasets and environment. We use four datasets with their respective download links: Cifar102,
Cifar1003, Flowers1024, and Tiny-ImageNet5. We split all client data into a training set and a test set
for each client at a ratio of 75% and 25%, respectively, and we evaluate the averaged test accuracy
on clients’ test sets. All our experiments are conducted on a machine with 64 Intel(R) Xeon(R)
Platinum 8362 CPUs, 256G memory, eight NVIDIA 3090 GPUs, and Ubuntu 20.04.4 LTS. Most
of our experiments can be completed within 48 hours, while others, involving many clients and
extensive local training epochs, may take up to a week to finish.

Hyperparameter settings. For our baseline methods, we set their hyperparameters following
existing work (Zhang et al., 2024a;b). As for our FedL2G-l and FedL2G-f, we tune the server
learning rate ηs (the unique hyperparameter) by grid search on the Cifar100 dataset in the default
Dirichlet setting with HtFE8 and use an identical setting on all experimental tasks without further
tuning. Specifically, we search ηs in the range: {0.01, 0.05, 0.1, 0.5, 1, 10, 50, 100, 500}. We set
ηs = 0.1 for FedL2G-l and set ηs = 100 for FedL2G-f. The ηs hyperparameters of FedL2G-l
and FedL2G-f differ due to their discrepancy in the learnable knowledge capacity of the guiding
vectors. The dimension of the guiding vectors in FedL2G-f is larger than in FedL2G-l, necessi-
tating more server updates.

The small auxiliary model for FML and FedKD. As FML and FedKD utilize a global auxiliary
model for mutual distillation, this auxiliary model needs to be as compact as possible to minimize
communication overhead during model parameter transmission (Wu et al., 2022). Therefore, we opt
for the smallest model within each group of heterogeneous models to serve as the auxiliary model
in all scenarios.

B SENSITIVITY STUDY

We conduct a sensitivity study here to further study the influence of the server learning rate ηs. From
Tab. 4, we know that FedL2G-l and FedL2G-f benefit from distinct ranges of ηs, also attributed
to their different trainable parameters and learning capacities. Moreover, FedL2G-f demonstrates
higher optimal accuracy than FedL2G-l, while FedL2G-l yields a more stable outcome across
different ηs.

ηs = 0.01 ηs = 0.05 ηs = 0.1 ηs = 0.5 ηs = 1

FedL2G-l 41.7±.3 41.6±.1 42.3±.1 41.6±.5 41.8±.3
ηs = 1 ηs = 10 ηs = 50 ηs = 100 ηs = 500

FedL2G-f 41.1±.5 42.0±.1 43.5±.1 43.8±.4 41.4±.5

Table 4: The test accuracy (%) of FedL2G-l and FedL2G-f on Cifar100 in the default Dirichlet
setting using HtFE8 with different ηs.

C THEORETICAL ANALYSIS

Here we bring some existing equations for convenience. Recall that we have N clients training their
heterogeneous local models (with parameters θ1, . . . ,θN ) using their private and heterogeneous
training data D1, . . . ,DN . Besides, they share global guiding vectors G = {vy}Cy=1, with the

2https://pytorch.org/vision/main/generated/torchvision.datasets.
CIFAR10.html

3https://pytorch.org/vision/stable/generated/torchvision.datasets.
CIFAR100.html

4https://pytorch.org/vision/stable/generated/torchvision.datasets.
Flowers102.html

5http://cs231n.stanford.edu/tiny-imagenet-200.zip
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assistance of a server to facilitate collaborative learning. Formally, the objective of FedL2G is

min
θ1,...,θN

N∑
i=1

|Di|
D
LDi

(θi,G), (C.1)

where the total client loss LDi
is defined by

LDi
(θi,G) := E(x,y)∼Di

[ℓce(fi(x,θi), y) + ℓg(fi(x,θi),v
y)], (C.2)

and the original local loss L′
Di

is defined by

L′
Di
(θi,G) := E(x,y)∼Di

[ℓce(fi(x,θi), y)]. (C.3)
Here we consider FedL2G-l for simplicity, and it is easy to extend theoretical analysis to
FedL2G-f by substituting ℓg(fi(x,θi),v

y) with ℓg(hi(x,θ
h
i ),v

y). We optimize global G by

Gt = Gt−1 − ηs
1

N

∑
i∈[N ]

∇Gt−1E(x,y)∼Dq
i
[ℓce(fi(x,θi − ηc∇θi

LBs
i
(θi,Gt−1)), y)], (C.4)

where we consider full participation for simplicity. The convergence of Eq. (C.2) for any client is
equivalent to the convergence of FedL2G’s objective in Eq. (C.1). Thus, in the following, we omit
the client notation i and some corresponding notations, such as Di.

To further examine the local training process, in addition to the communication iteration notation t,
we introduce e ∈ {1/2, 1, 2, . . . , E} to represent the local step. We denote the eth local training step
in iteration t as tE + e. Specifically, tE + 1/2 refers to the moment when clients receive G before
local training. We adopt four assumptions, partially based on FedProto (Tan et al., 2022b).
Assumption 1 (Unbiased Gradient and Bounded Variance). The stochastic gradient ωt =
∇Lξ(θ

t,Gt) is an unbiased estimation of each client’s gradient w.r.t. its loss:

Eξ∼D[ω
t] = ∇L(θt,G) = ∇Lt.

and its variance is bounded by σ2:
E[||ωt −∇Lt||22] ≤ σ2.

Assumption 2 (Bounded Gradient). The expectation of the stochastic gradient ωt and ω′t =
∇L′

ξ(θ
t,Gt) are bounded by R and R′, respectively:

E[||ωt||2] ≤ R, E[||ω′t||2] ≤ R′.

Assumption 3 (Lipschitz Smoothness). Each total local objective L is L1-Lipschitz smooth, which
also means the gradient of L is L1-Lipschitz continuous, i.e.,

||∇Lt1 −∇Lt2 ||2 ≤ L1||θt1 − θt2 ||2, ∀t1, t2 > 0,

which implies the following quadratic bound,

Lt1 − Lt2 ≤
〈
∇Lt2 , (θt1 − θt2)

〉
+

1

2
L1||θt1 − θt2 ||22, ∀t1, t2 > 0.

Besides, each client model function f is L2-Lipschitz smooth, i.e.,
||∇f t1 −∇f t2 ||2 ≤ L2||θt1 − θt2 ||2, ∀t1, t2 > 0.

Given Assumption 1 and Assumption 2, any client’s gradient w.r.t. G is
πt−1 = ∇Gt−1E(x,y)∼Dq [ℓce(f(x,θ − ηc∇θLBs(θ,Gt−1)), y)] (C.5)

= E(x,y)∼Dq [∇Gt−1ℓce(f(x,θ − ηc∇θLBs(θ,Gt−1)), y)] (C.6)

= E(x,y)∼Dq [∇1ℓce · ∇2f · ∇Gt−1(θ − ηc∇θLBs(θ,Gt−1))] (C.7)

= −ηcE(x,y)∼Dq [∇1ℓce · ∇2f · ∇Gt−1∇θLBs(θ,Gt−1)] (C.8)

= −ηcE(x,y)∼Dq{∇1ℓce · ∇2f · E(x′,y′)∼Bs [∇Gt−1∇θℓg(f(x
′,θ),vy′

)]} (C.9)

= −ηcE(x,y)∼Dq{∇1ℓce · ∇2f · E(x′,y′)∼Bs [∇2f · ∇Gt−1∇1ℓg]} (C.10)

= 2ηcE(x,y)∼Dq{∇1ℓce · ∇2f · E(x′,y′)∼Bs [∇2f ]}, (C.11)
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where ∇1ℓce := ∇a1
ℓce(a1, a2), indicating the derivative of ℓce w.r.t. the first variable, and so for

∇2f and ∇1ℓg . Under Assumption 1, we can mimic regular training through the pseudo-train step
3 , as Bs is randomly re-sampled in each iteration. All the derivatives in Eq. (C.11) are bounded

under Assumption 2.

Then, we have two key lemmas:
Lemma 1. Let Assumption 1 and Assumption 3 hold. The total client loss of an arbitrary client can
be bounded:

E[L(t+1)E ] ≤ LtE+1/2 + (
L1η

2
c

2
− ηc)

E−1∑
e=1/2

||∇LtE+e||22 +
L1Eη2cσ

2

2
.

Proof. This lemma focuses solely on local training at the client level, incorporating both the orig-
inal local objective and the guiding objective. It can be easily derived by substituting the relevant
notations from Lemma 1 of the prototype-based HtFL method, FedProto.

Lemma 2. Let Assumption 2 and Assumption 3 hold. After the guiding vectors are updated on the
server and downloaded to clients, the total client loss of an arbitrary client can be bounded:

E[L(t+1)E+1/2] ≤ L(t+1)E + 2η2cηsL2R
′ER.

Proof.

L(t+1)E+1/2 = L(t+1)E + L(t+1)E+1/2 − L(t+1)E (C.12)

= L(t+1)E + ||f(θ(t+1)E)− G(t+2)E ||2 − ||f(θ(t+1)E)− G(t+1)E ||2 (C.13)
(a)

≤ L(t+1)E + ||G(t+2)E − G(t+1)E ||2 (C.14)

= L(t+1)E + ηs||E[N ](π
(t+1)E − π(t+2)E)||2 (C.15)

(b)

≤ L(t+1)E + ηsE[N ]||π(t+1)E − π(t+2)E ||2 (C.16)
(c)

≤ L(t+1)E + 2ηcηsE[N ]ED||∇1ℓ
(t+1)E
ce · ∇2f

(t+1)E · Eξ[∇2f
(t+1)E ]−∇1ℓ

tE
ce · ∇2f

tE · Eξ[∇2f
tE ]||2

(C.17)
(d)

≤ L(t+1)E + 2ηcηsR
′E[N ]Eξ||∇2f

(t+1)E −∇2f
tE ||2 (C.18)

(e)

≤ L(t+1)E + 2ηcηsL2R
′E[N ]Eξ||θ(t+1)E − θtE ||2 (C.19)

(f)

≤ L(t+1)E + 2η2cηsL2R
′E[N ]Eξ

E−1∑
e=1/2

||ωtE+e||2 (C.20)

Take expectations of random variable ξ, we have

E[L(t+1)E+1/2] ≤ L(t+1)E + 2η2cηsL2R
′E[N ]Eξ

E−1∑
e=1/2

||ωtE+e||2 (C.21)

(g)

≤ L(t+1)E + 2η2cηsL2R
′ER. (C.22)

In the above inequations, (a) follows from ||a − b||2 − ||a − c||2 ≤ ||b − c||2; (b), (c), and (f)
follow from ||

∑
aj ||2 ≤

∑
||aj ||2, where EDa denotes taking expectations of a over set D, e.g.,

E[N ]a means Ei∼{1,...,N}aj ; (d) follows from Assumption 1 and Assumption 2, where L′(θ,G) =
∇1ℓce · ∇2f ; (e) follows from Assumption 3; (g) follows from Assumption 2.

Then, we have

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Theorem 1 (One-iteration deviation). Let Assumption 1 to Assumption 3 hold. For an arbitrary
client, after every communication iteration, we have

E[L(t+1)E+1/2] ≤ LtE+1/2 + (
L1η

2
c

2
− ηc)

E−1∑
e=1/2

||∇LtE+e||22 +
L1Eη2cσ

2

2
+ 2η2cηsL2R

′ER.

Proof. Taking expectation of θ on both sides in Lemma 2, we have
E[L(t+1)E+1/2] ≤ E[L(t+1)E ] + 2η2cηsL2R

′ER. (C.23)
Then summing Eq. (C.23) and Lemma 1 up, we have

E[L(t+1)E+1/2] ≤ LtE+1/2 + (
L1η

2
c

2
− ηc)

E−1∑
e=1/2

||∇LtE+e||22 +
L1Eη2cσ

2

2
+ 2η2cηsL2R

′ER.

(C.24)

Theorem 2 (Non-convex convergence rate of FedL2G). Let Assumption 1 to Assumption 3 hold
and ∆ = L0 − L∗, where L∗ refers to the local optimum. Given Theorem 1, for an arbitrary client
and an arbitrary constant ϵ, our FedL2G has a non-convex convergence rate O(1/T ) with

1

T

T−1∑
t=0

E−1∑
e=1/2

E[||∇LtE+e||22] ≤
2∆
T + L1Eη2cσ

2 + 4η2cηsL2R
′ER

2ηc − L1η2c
< ϵ,

where 0 < ηc <
2ϵ

L1(Eσ2+ϵ)+4ηsL2R′ER and ηs > 0.

Proof. By interchanging the left and right sides of Eq. (C.24), we can get
E−1∑
e=1/2

||∇LtE+e||22 ≤
LtE+1/2 − E[L(t+1)E+1/2] +

L1Eη2
cσ

2

2 + 2η2cηsL2R
′ER

ηc − L1η2
c

2

, (C.25)

when ηc − L1η
2
c

2 > 0, i.e., 0 < ηc <
2
L1

. Taking the expectation of θ on both sides and summing all
inequalities overall communication iterations, we obtain

1

T

T−1∑
t=0

E−1∑
e=1/2

E[||∇LtE+e||22] ≤
1
T

∑T−1
t=0 (LtE+1/2 − E[L(t+1)E+1/2]) +

L1Eη2
cσ

2

2 + 2η2cηsL2R
′ER

ηc − L1η2
c

2

.

(C.26)
Let ∆ = L0 − L∗ > 0, we have 1

T

∑T−1
t=0 (LtE+1/2 − E[L(t+1)E+1/2]) ≤ ∆ and

1

T

T−1∑
t=0

E−1∑
e=1/2

E[||∇LtE+e||22] ≤
2∆
T + L1Eη2cσ

2 + 4η2cηsL2R
′ER

2ηc − L1η2c
. (C.27)

Given any ϵ > 0, let
2∆
T + L1Eη2cσ

2 + 4η2cηsL2R
′ER

2ηc − L1η2c
< ϵ, (C.28)

we have
T >

2∆

ϵηc(2− L1ηc)− η2c (L1Eσ2 + 4ηsL2R′ER)
. (C.29)

In this context, we have
1

T

T−1∑
t=0

E−1∑
e=1/2

E[||∇LtE+e||22] ≤ ϵ, (C.30)

when
0 < ηc <

2ϵ

L1(Eσ2 + ϵ) + 4ηsL2R′ER
<

2

L1
, (C.31)

and
ηs > 0 (C.32)

Since all the notations of the right side in Eq. (C.27) are given constants except for T , our FedL2G’s
non-convex convergence rate is ϵ ∼ O(1/T ).
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D VISUALIZATIONS OF DATA DISTRIBUTIONS

We illustrate the data distributions on all clients in the above experiments in the following.
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Figure 5: The data distribution of each client on Cifar10, Flowers102, Cifar100, and Tiny-ImageNet,
respectively, in the pathological settings. The size of a circle represents the number of samples.
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Figure 6: The data distribution of each client on Cifar10 (β = 0.1), Flowers102 (β = 0.01),
Cifar100 (β = 0.1), and Tiny-ImageNet (β = 0.01), respectively, in Dirichlet setting s. The size of
a circle represents the number of samples.
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Figure 7: The data distribution of each client on Cifar100 in the Dirichlet setting (β = 0.1) with 50
and 100 clients, respectively. The size of a circle represents the number of samples.

20


	Introduction
	Related Work
	Heterogeneous Federated Learning (HtFL)
	Student-Centered Guidance

	Federated Learning-to-Guide: FedL2G
	Notations and Preliminaries
	Learning to Guide
	Efficiency Analysis
	Convergence Analysis

	Experiments
	Accuracy in Two Data Heterogeneity Settings
	Accuracy in Additional Five Model Heterogeneity Settings
	Accuracy With More Clients or More Local Training Epochs
	Communication and Computation Overhead
	FedL2G Prioritizes the Original Task
	FedL2G Protects Feature Information

	Conclusion
	Additional Experimental Details
	Sensitivity Study
	Theoretical Analysis
	Visualizations of Data Distributions

